Final Award in Quick Composing TT-114 | Окончательные итоги блицконкурса ТТ-114Theme | Тема [ Announcement | Объявление ]
52 entries were received from 26 authors representing 12 countries | На конкурс поступило 52 композиции от 26 авторов из 12 странEN <-> RU When I got the idea of composition tournament (to create a problem with the same square of four black pawns on e4-d4-d5-e5), some people told me: “What is the interest?”, “All the problems will be the same!” or “You will get only 10 problems!” The result is that I received 52 problems with a great variety of ideas and forms. It shows the incredible dynamism of chess composition! Award is the following | Отличия распределились следующим образом
1st Prize, 1st Place - No 23, Alexander Fica (Czech Republic) & Zoltan Labai (Slovakia) 1.Sc4-b6 c3*d4 + 2.e5*d4 Sh3-f2 3.Rc1-c4 Sf2*e4 #{,}1.d7-d6 f3*e4 2.d5*e4 c3*b4 + 3.Kc5-d5 Sh3-f4 #{,}1.Kc5-d6 Kh4-g4 2.Kd6-e6 Rg5-g6 3.Sc4-d6 Sh3-g5 #
This problem with three solutions has clearly my preference for first prize: the black central square of pawns is here but completely "integrated" in the construction.
EN <-> RU
At the beginning, white rook g5 is pinned by black bishop f6. But this rook create it self an half-pin of black e5-d5 pawns. In the first solution, e5 pawn disappears and d5 becomes pinned! It is the contrary in the second solution, and white can mate by Knight in e4 and f4. In the third variation, White king moves, unpinning white rook g5. Then this rook can pin black bishop on the 6th rank allowing mate by Knight on g5. Three mates by the Knight using each time a different pin. A very original problem with great unity! 2nd Prize, 2nd Place - No 48, Sergey Abramenko (Russia) 1.d4-d3 Sf8-g6 2.d5-d4 Rc2-c6 + 3.Kd6-d5 Sg6-e7 #{,}1.e4-e3 Rc2*f2 2.e5-e4 Rf2-f6 + 3.Kd6-e5 Sf8-d7 #{,}
1.Kd6-e7 Kg2-h3 2.Ke7-f6 Kh3*h4 3.Kf6-f5 Rc2*f2 #{,}1.f2-f1=R Sf8-d7 2.Rf1-f7 Sd7-b8 3.Rf7-e7 Rc2-c6 #
A very economic position but to your surprise and pleasure, four different mates with Rook and Knight!
EN <-> RU
3rd Prize, 3rd Place - No 21, Vladimir Koci (Czech Republic) 1.d2-d1=B Bb1-d3 2.Bd1-h5 Bd3-a6 3.Bh5-f7 Ba6-c8 #{,}1.d4-d3 Bf8*c5 2.d5-d4 Bc5*a3 3.Ke6-d5 Bb1-a2 #{,}
1.Bc5-b6 Bf8*g7 2.Ke6-d6 Bb1-d3 3.Kd6-c5 Bg7-f8 #
Three mates by the bishops. Note the surprising promotion in bishop in the first variation to obtain self-blocking of f7.
EN <-> RU
4th Prize - No 24, Alexander Fica (Czech Republic) & Zoltan Labai (Slovakia) 1.d4-d3 b4-b5 2.d5-d4 b3-b4 3.Ke6-d5 Ba4-b3 #{,}1.e4-e3 f2-f3 2.e5-e4 Ba4-d7 + 3.Ke6-e5 f3-f4 #{,}
1.Ba6-b5 c2-c4 2.Bb5-d7 Ba4-c6 3.Rg5-f5 Bc6*d5 #{,}1.Rg5-g7 f2-f4 2.Sg4-f2 g3-g4 3.Rg7-f7 f4-f5 #
Four solutions, but not the same harmony than in the first prizes.
EN <-> RU
5th Prize - No 42, Emanuel Navon (Israel) a) 1.e4-e3 b3*a4 2.Ka5*a4 Rh4*d4 3.Ra8-a5 Rd4*b4 #{,}1.e4-e3 a3*b4 + 2.Ka5*b4 Bb2*d4 3.Kb4-a3 Bd4-b2 #{;}
b) wKc2-->b3
1.d4-d3 Rh4*e4 2.d5-d4 Bb2*d4 3.Ra8-a6 Re4*e5 #{,}1.d4-d3 Bb2*e5 2.e4-e3 Rh4*b4 3.Bc8-a6 Be5-c7 #
Original construction with two solutions by twin. In the first one, the opening of the 4th rank allows mates by bishop then by rook.
EN <-> RU
In the second, the blocking of a6 square allows mate by rook then by bishop. One little weakness: pawn a3 don't use in first variation of b). 1st Honorable mention - No 35, Zlatko Mihajloski (Macedonia) 1.d4-d3 Kf1-g2 2.d3*e2 d2-d4 3.Sb7-c5 d4*c5 4.e2-e1=R c5-c6 5.Re1-a1 c6-c7 6.Ra1-a7 c7-c8=Q #{,}
1.Ka8-a7 Kf1-e1 2.Ka7-b6 Ke1-d1 3.Kb6-c5 Kd1-c2 4.d4-d3 + Kc2-b3 5.Kc5-d4 Kb3-b4 6.Bg1-h2 e2-e3 #
Two solutions is very different in their spirit but complementary: “Excelsior & back rank mate” and “King walk & mate in the centre”.
EN <-> RU
2nd Honorable mention - No 14, Gabor Tar (Hungary) a) 1.Sf3-g5 Rd2*d4 2.Sg5-e6 Rd4*d5 + 3.Kd6*d5 Re7*d7 #{;}
b) wRe7-->h4
1.Bg4-f5 f4*e5 + 2.Kd6*e5 Rh4*e4 + 3.Ke5*e4 Rd2-e2 #
“Explosion of the center” with self-blocking in e6 in a) and f5 in b). A Zilahi is also added.
EN <-> RU
3rd Honorable mention - No 32, Zlatko Mihajloski (Macedonia) 1.Kb7-a8 d2-d3 {(e3?)} 2.e4*d3 e2-e4 3.d3-d2 e4*d5 4.d2-d1=R d5-d6 5.Rd1-a1 d6*c7 6.Ra1-a7 c7-c8=Q #{,}
1.Kb7-c8 e2-e3 {(d3?)} 2.d4*e3 d2-d4 3.e3-e2 d4*e5 4.e2-e1=Q e5-e6 5.Qe1-b4 e6-e7 6.Qb4-b7 e7-e8=Q #
Zilahi & Excelsiors with good unity in the two solutions.
EN <-> RU
4th Honorable mention - No 33, Mario Parrinello (Italy) a) 1.Bd8*e7 d7-d8=Q 2.Be7-b4 Qd8*d5 3.Bb4-d2 Qd5*e4 #{;}
b) wPd3-->c3
1.Be8*d7 e7-e8=Q 2.Bd7-b5 Qe8*e5 3.Bb5-e2 Qe5*d4 #
Pawn Zilahi.
EN <-> RU
5th Honorable mention - No 17, Dieter Müller (Germany) a) 1.Ke3-d3 Sb6*d5 2.Kd3-c4 f4-f5 3.Kc4*d5 Bc8-e6 #{;}
b) wSb6-->c6
1.Sh7-f6 f4*e5 2.Ke3-f4 Sc6-e7 3.Kf4*e5 Se7-g6 #
In only 11 pieces this composition presents a Kniest and an interesting cyclic change of functions:
EN <-> RU
a) wSb6(c6) - sacrifice, wBc8 - mate, wPf4 - check e6; b) wSb6(c6) - mate, wBc8 - check e6, wPf4 - sacrifice. 1st Commendation - No 25, Fedir Kapustin (Ukraine) a) 1.e4-e3 f6*g7 2.Kd3-e4 g7-g8=Q 3.d4-d3 Qg8-g4 #{;}
b) bKd3-->e3
1.d4-d3 f6-f7 2.Ke3-d4 f7-f8=Q 3.e4-e3 Qf8-b4 #
Mates in echo chameleon given by the white queen.
EN <-> RU
2nd Commendation - No 40, Anatoly Vasilenko (Ukraine) 1.Kc4-c5 Sg5-h7 2.Kc5-d6 Bc3-b4 + 3.Kd6*e6 Sh7-f8 #{,}1.Kc4-d3 Sg5-f3 2.e4*f3 Bc3-d2 3.Kd3-e4 Be6-f5 #
Zilahi/Model mates in 9 pieces.
EN <-> RU
3rd Commendation - No 45, Ingemar Lind (Sweden) 1.d4-d3 Sd7*e5 2.Kd6*e5 Bf2-h4 3.Ke5-d4 Bh4-f6 #{,}1.a5*b4 Sd7-f8 2.Kd6-c5 Bf2*d4 + 3.Kc5*d4 Sf8-e6 #
Zilahi/Kniest in 11 pieces.
EN <-> RU
4th Commendation - No 15, Harald Grubert (Germany) 1...Bh2-g3 2.d4-d3 Bg1-a7 3.Kg2-f3 Kb7-b6 4.Kf3-e3 Bg3-e1 5.Ke3-d4 Kb6-b5 #
One solution and one promoted bishop but an original idea of Indian theme in 8 pieces only.
EN <-> RU
5th Commendation - No 41, Anatoly Vasilenko (Ukraine) a) 1.Ke2-d3 c4*d5 {(A)} 2.Kd3-c4 f3*e4 {(B)} 3.Kc4-c5 c3*d4 + {(C)} 4.Kc5-d6 f4*e5 #{(D)}{;}
b) wKd8-->e8
1.Ke2-e3 f4*e5 {(D)} 2.Ke3-f4 c3*d4 {(C)} 3.Kf4-f5 f3*e4 + {(B)} 4.Kf5-e6 c4*d5 # {(A)}
Mates in echo with a funny idea: the black central square becomes white at the end!
EN <-> RU
URL address of this web page | Адрес этой страницы http://superproblem.ru/htm/tourneys/quick-tt/results/tt-114_award.html |
|