Final Award in Quick Composing TT-200 | Окончательные итоги блицконкурса TT-200
5+ without repetitions | 5+ без повторов!
Theme | Тема
h#1.5-n. required a helpmate-problem representing with at least 5 solutions, at that all White moves and all Black moves must be different in all solutions. Wherein:
- moves of the same piece from different initial squares to the same final square are considered as different moves;
- moves of the same piece from the same initial square to the same final square with capture and without capture are considered as repeated moves.
Conditions:
- any fairy pieces and conditions, any twins and extra-set pieces are not allowed;
- solutions with repeated mates (i. e. with the same position of both the same White mating piece and Black King) are not allowed;
- attacked King (under a check) in the initial (diagram) position is not allowed;
- set play is not considered.
Scoring:
- the problem with h#n stipulation and with m solutions, that satisfies all above specified conditions, will be evaluated in n*m points;
- in case of White officer (not a Pawn and not a King) is not necessary in mating position of any solution, – penalty of n points for each unnecessary White officer (i. e. a penalty in the amount of moves quantity of stipulation).
Joint problems are allowed. Each participant may submit no more than three entries (including joint works).
The winning problem will be the one with the highest score among all entries. In the case of equality of points number, an advantage will get those problems which have less number of units. The second criterion (if the first criterion was useless to differentiate the competing problem) is a less number of White units.
As extra, there will be mentioned the problems anyhow related to New Year and the problems with clearly interconnected, homogeneous solutions or with groups of solutions (HOTF).
Technically, the points will be calculated according to the following formula:
S = n*m - n*k), where
n being the number of moves in stipulation of the problem (integer or fractional number greater than 1);
m being the number of solutions;
k being the number of unnecessary White pieces in mating positions in total.
h#1.5-n. Составить задачу на кооперативный мат с количеством решений не менее 5, причем ни один ход белых и ни один ход черных не должен повторяться в разных решениях. При этом:
- ходы одной и той же фигуры с разных начальных полей на одно и то же конечное поле считаются разными ходами;
- ходы одной и той же фигуры с одного и того же начального на одно и то же конечное поле со взятием и без взятия считаются одинаковыми ходами.
Условия:
- запрещены сказочные фигуры и условия, а также сверхкомплект и близнецы любого типа;
- запрещены решения с повторяющимися матами (т. е. с совпадающими позициями одной и той же белой матующей фигуры и черного короля);
- не допускается нахождение под шахом короля в диаграммной позиции;
- иллюзорная игра не учитывается.
Начисление и снятие баллов:
- задача с заданием h#n и с m решениями, удовлетворяющая всем вышеперечисленным условиям, будет оценена в n*m баллов;
- за каждую белую фигуру (кроме пешки и короля), не нужную для матовой позиции какого-либо решения, снимается n баллов (т. е. начисляется штраф в размере количества ходов задания).
Совместные композиции разрешены. Каждый автор может прислать не более трех композиций, включая совместные.
В конкурсе побеждает задача, набравшая наибольшее количество баллов. При равенстве баллов выше считается та задача, у которой меньше общее количество фигур; если и здесь равенство – то та, у которой меньше белых фигур.
Особо будут отмечены скахографические задачи, так или иначе связанные с Новым Годом, а также задачи с четко взаимосвязанными, однородными решениями или группами решений (HOTF).
Технический подсчет баллов осуществляется по формуле S = n*m - n*k), где
S – оценка задачи в баллах;
n – количество ходов задания (целое или дробное число, большее 1);
m – количество решений;
k – общее количество ненужных белых фигур в матовых позициях.
31 entries were received from 26 authors representing 9 countries | На конкурс поступило 31 композиций от 26 авторов из 9 стран
EN <-> RU
Following problems are not included in the award:
- No 3 (Kg7-Kh1), No 9 (Kh3-Kh1), No 17 (Kg4-Kh1) – there is no enough originality compare to 4th example from the announcement;
- No 4 (Kg3-Kg1) – it is non-thematic: repetition of Ra8-h8;
- No 8 (Kh6-Kh4) – anticipation yacpdb/398934;
- No 18 (Kh3-Kh1) – illegal position. Moreover, there is no enough originality compare to 4th example too;
- No 27 (Kh8-Kh1) – the author sent two very similar problems (with the same quantity of points), and I included only one of them in the award – No 29, which is more economic and with slightly more interesting play.
В присуждение не включены следующие задачи:
- No 3 (Kg7-Kh1), No 9 (Kh3-Kh1), No 17 (Kg4-Kh1) – недостаточно для оригинальности по сравнению с 4-м примером из объявления;
- No 4 (Kg3-Kg1) – нетематична: повтор хода Ra8-h8;
- No 8 (Kh6-Kh4) – предок yacpdb/398934;
- No 18 (Kh3-Kh1) – нелегальная позиция. К тому же и здесь оригинальности по сравнению с 4-м примером недостаточно;
- No 27 (Kh8-Kh1) – автор прислал две очень похожие задачи (с одинаковым количеством баллов), из которых в присуждение включена более экономичная и с чуть более интересной игрой (No 29);
Award is the following | Отличия распределились следующим образом
Section of task problems | Тасковые задачи
1st Place, 27 points - No 29 Ingemar Lind TT-200, SuperProblem, 14-02-2018 | |
8/8/k7/ppn5/P2PPPPP/3ppppp/1n6/Kb6 |
h#4.5 | 6.1.. | (7+11) |
|
2nd Place, 25 points - No 16 Aleksandr Kostyukov TT-200, SuperProblem, 14-02-2018 | |
8/3p2pp/2r1q3/3kp1K1/1b4p1/1Pp1pp2/4P3/rb4n1 |
h#5 | 5.1.. | (3+15) |
|
3rd Place, 24.5 points - No 26 Mikhail Halma & Viktor Yuzyuk TT-200, SuperProblem, 14-02-2018 | |
7R/p1b1p3/1p1pP3/6p1/6Pp/PPPPPK2/5Ppp/4rrkb |
h#3.5 | 7.1.. | (10+13) |
|
1st Place, 27 points - No 29, Ingemar Lind (Sweden) 8/8/k7/ppn5/P2PPPPP/3ppppp/1n6/Kb6
1...dxc5 2.bxa4 c6 3.Kb5 c7 4.Kb4 c8Q 5.Ka3 Qc3#
1...e5 2.e2 e6 3.e1R e7 4.Re6 e8Q 5.Rb6 Qe8-a8# (wPe4)
1...f5 2.f2 f6 3.f1R f7 4.Rf6 f8Q 5.Rb6 Qf8-a8# (wPf4)
1...g5 2.g2 g6 3.g1R g7 4.Rg6 g8Q 5.Rb6 Qg8-a8# (wPg4)
1...h5 2.h2 h6 3.h1R h7 4.Rh6 h8Q 5.Rb6 Qh8-a8# (wPh4)
1...d5 2.d2 d6 3.d1R d7 4.Rd6 d8Q 5.Rb6 Qd8-a8# (wPd4)
S = 4.5 * 6 – 0 = 27
Editorial. The problem is thematic: mates Qa8# are not repetitive because they are performed by different pieces – by Queens that promoted from different Pawns (see conditions of the tourney).
От редакции. Задача тематична: маты Qa8# не являются повторяющимися, т. к. выполняются разными фигурами – ферзями, возникшими из разных белых пешек (см. условия конкурса).
EN <-> RU
2nd Place, 25 points - No 16, Aleksandr Kostyukov (Russia) 8/3p2pp/2r1q3/3kp1K1/1b4p1/1Pp1pp2/4P3/rb4n1
1.Ra4 bxa4 2.Kd6 a5 3.Kc7 a6 4.Kc8 a7 5.Rc7 a8Q#
1.Ba5 b4 2.Qe8 b5 3.Ke6 bxc6 4.Kf7 cxd7 5.Kg8 dxe8Q#
1.Ke4 Kh5 2.Kf5 Kh4 3.Kg6 exf3 4.Kh6 fxg4 5.Bg6 g5#
1.Rc4 bxc4+ 2.Kc6 c5 3.Kb7 c6+ 4.Ka8 c7 5.Ra7 c8Q#
1.Qd6 Kxg4 2.Sh3 Kxf3 3.Bf5 Kxe3 4.Be6 Kd3 5.Bc5 e4#
S = 5 * 5 – 0 = 25
3rd Place, 24.5 points - No 26, Mikhail Halma & Viktor Yuzyuk (Ukraine) 7R/p1b1p3/1p1pP3/6p1/6Pp/PPPPPK2/5Ppp/4rrkb
1...Rd8 2.Rd1 Rxd6 3.Rxd3 Rxd3 4.Rd1 Rxd1#
1...Ke4 2.Kxf2 d4 3.Rg1 Kd3 4.Kf1 Rf8#
1...Rxh4 2.Rxf2+ Kg3 3.Kf1 Rxh2 4.g1S Rxf2#
1...Ra8 2.Ra1 Rxa7 3.Rxa3 Rxa3 4.Ra1 Rxa1#
1...e4 2.Rxe4 Rh6 3.Rxe6 Rxe6 4.Re1 Rxe1#
1...Rb8 2.Rb1 Rxb6 3.Rxb3 Rxb3 4.Rb1 Rxb1#
1...Rc8 2.Rc1 Rxc7 3.Rxc3 Rxc3 4.Rc1 Rxc1#
S = 3.5 * 7 – 0 = 24.5
20 points - No 21 Rolf Wiehagen & Christer Jonsson TT-200, SuperProblem, 14-02-2018 | |
k6r/p6p/p7/7K/1RPPPPP1/1Pn1q2p/6r1/7R |
h#2.5 | 8.1.. | (9+9) |
|
20 points - No 10 Gábor Tar TT-200, SuperProblem, 14-02-2018 | |
6R1/6K1/bqr5/npnrP1P1/3b1p1p/pppppPBP/8/6k1 |
h#4 | 6.1.. | (7+16) |
|
18 points - No 5 Stephen Taylor TT-200, SuperProblem, 14-02-2018 | |
1b1KR3/2p1Bq1r/4kn2/1p2np2/1P5P/5pp1/8/4r3 |
h#3 | 6.1.. | (5+12) |
|
20 points - No 21, Rolf Wiehagen (Germany) & Christer Jonsson (Sweden) k6r/p6p/p7/7K/1RPPPPP1/1Pn1q2p/6r1/7R
1...Rf1 2.Qxf4 Rxf4 3.Rf8 Rxf8#
1...Rg1 2.Rxg4 Rxg4 3.Rg8 Rxg8#
1...Re1 2.Qxe4 Rxe4 3.Re8 Rxe8#
1...Rb1 2.Sa4 bxa4 3.Rb8 Rxb8#
1...Rd1 2.Qxd4 Rxd4 3.Rd8 Rxd8#
1...Rc1 2.Sd5 cxd5 3.Rc8 Rxc8#
1...Ra1 2.a5 Rxa5 3.a6 Rxa6#
1...Kg5 2.h5 Rxh3 3.hxg4 Rxh8#
S = 2.5 * 8 – 0 = 20
20 points - No 10, Gábor Tar (Hungary) 6R1/6K1/bqr5/npnrP1P1/3b1p1p/pppppPBP/8/6k1
1.a2 Ra8 2.a1R Rxa6 3.Ra2 Rxa5 4.Rg2 Ra1#
1.b2 Rb8 2.b1R Rxb6 3.Rb2 Rxb5 4.Rg2 Rb1#
1.c2 Rc8 2.c1R Rxc6 3.Rc2 Rxc5 4.Rg2 Rc1#
1.d2 Rd8 2.d1R Rxd5 3.Rd2 Rxd4 4.Rg2 Rd1#
1.e2 Rf8 2.e1R Rxf4 3.Re2 Re4 4.Rg2 Re1#
1.Rf6 gxf6 2.Kg2 f7 3.Kxf3 f8Q 4.Ke4 Qxf4#
S = 4 * 6 – 4 * 1 = 20 (wRg8 is excess for Qxf4#)
18 points - No 5, Stephen Taylor (Great Britain) 1b1KR3/2p1Bq1r/4kn2/1p2np2/1P5P/5pp1/8/4r3
1.Seg4 Kc8 2.Ke5 Bxf6+ 3.Kf4 Bg5#
1.f4 Bf8+ 2.Kf5 Rxe5+ 3.Kg6 Rg5#
1.Sd5 Bg5+ 2.Kd6 Be3 3.c6 Bc5#
1.Se4 Bd6+ 2.Kf6 Re7 3.Qg6 Bxe5#
1.Qf8 h5 2.Kf7 h6 3.Kg8 Rxf8#
1.Ba7 Kxc7 2.Sg8 Rd8 3.Sxe7 Rd6#
S = 3 * 6 – 0 = 18
18 points - No 31 V. Nallusamy & M. Solaiappan TT-200, SuperProblem, 14-02-2018 | |
7k/3b2pp/p7/2p1p2K/1pP1PpP1/1P3P2/P2P2P1/R7 |
h#3 | 6.1.. | (10+9) |
|
16 points - No 24 Viktor Yuzyuk & Mikhail Halma TT-200, SuperProblem, 14-02-2018 | |
6rk/8/6PP/8/pppppp2/6Rr/8/4K3 |
h#2 | 8.1.. | (4+9) |
|
15 points - No 30 Balasubramanian S.K. & S. Kalyan TT-200, SuperProblem, 14-02-2018 | |
R7/8/8/p7/2P2P2/1P2P1Kp/P2P3P/rb5k |
h#2.5 | 6.1.. | (9+5) |
|
18 points - No 31, Velmurugan Nallusamy & Manikumar Solaiappan (India) 7k/3b2pp/p7/2p1p2K/1pP1PpP1/1P3P2/P2P2P1/R7
1.Ba4 bxa4 2.b3 Rb1 3.bxa2 Rb8#
1.Bb5 cxb5 2.c4 Rc1 3.cxb3 Rc8#
1.Bc6 a4 2.Bb5 axb5 3.axb5 Ra8#
1.Bxg4+ fxg4 2.f3 Rf1 3.fxg2 Rf8#
1.Bf5 exf5 2.e4 Re1 3.exf3 Re8#
1.h6 Kg6 2.h5 Kf7 3.hxg4 Rh1#
S = 3 * 6 – 0 = 18
16 points - No 24, Viktor Yuzyuk & Mikhail Halma (Ukraine) 6rk/8/6PP/8/pppppp2/6Rr/8/4K3
1.Rxh6 Rh3 2.Rh7 Rxh7#
1.a3 Rxa3 2.Ra8 Rxa8#
1.b3 Rxb3 2.Rb8 Rxb8#
1.c3 Rxc3 2.Rc8 Rxc8#
1.d3 Rxd3 2.Rd8 Rxd8#
1.e3 Rxe3 2.Re8 Rxe8#
1.f3 Rxf3 2.Rf8 Rxf8#
1.Rxg6 h7 2.Rg8 hxg8Q#
S = 2 * 8 – 0 = 16
15 points - No 30, Balasubramanian S. K. & Seetharaman Kalyan (India) R7/8/8/p7/2P2P2/1P2P1Kp/P2P3P/rb5k
1...Kf2 2.Kxh2 Rh8 3.Kh1 Rxh3#
1...Rb8 2.a4 bxa4 3.Rxa2 Rxb1#
1...e4 2.Bxe4 Re8 3.Bb1 Re1#
1...f5 2.Bxf5 Rf8 3.Bb1 Rf1#
1...d3 2.Bxd3 Rd8 3.Bb1 Rd1#
1...Rxa5 2.Bxa2 Rxa2 3.Kg1 Rxa1#
S = 2.5 * 6 – 0 = 15
15 points - No 15 Aleksey Ivunin & Aleksandr Pankratyev TT-200, SuperProblem, 14-02-2018 | |
3Kn3/1q6/4bp2/2p3R1/3k1B2/8/6p1/8 |
h#3 | 5.1.. | (3+7) |
|
15 points - No 12 Anton Bidlen TT-200, SuperProblem, 14-02-2018 | |
5q2/1n4B1/1K1P4/1R2pPr1/2P2k2/4p2b/6pP/b7 |
h#3 | 6.1.. | (7+9) |
|
12.5 points - No 20 Rolf Wiehagen & Christer Jonsson TT-200, SuperProblem, 14-02-2018 | |
2q5/3p3p/3P4/3P4/3P4/3P4/2Rp1p1r/5K1k |
h#2.5 | 5.1.. | (6+7) |
|
15 points - No 15, Aleksey Ivunin & Aleksandr Pankratyev (Russia) 3Kn3/1q6/4bp2/2p3R1/3k1B2/8/6p1/8
1.Kc4 Bc7 2.Kb5 Rxc5+ 3.Ka6 Ra5#
1.Kd3 Bg3 2.Ke2 Re5+ 3.Kf1 Re1#
1.c4 Rb5 2.Bd5 Rb6 3.Kc5 Be3#
1.f5 Bd2 2.Ke5 Rg7 3.Kf6 Bc3#
1.Qc6 Be5+ 2.Kd5 Bxf6+ 3.Kd6 Be7#
S = 3 * 5 – 0 = 15
15 points - No 12, Anton Bidlen (Slovakia) 5q2/1n4B1/1K1P4/1R2pPr1/2P2k2/4p2b/6pP/b7
1.Kg4 Rxe5 2.Kh5 Re6 3.Bg4 Rh6#
1.Kxf5 Kc6 2.Ke6 Rxb7 3.Qf5 Re7#
1.Ke4 c5 2.Kd5 c6+ 3.Kxd6 Bxf8#
1.Kf3 Bxe5 2.Kf2 Bg3+ 3.Kg1 Rb1#
1.e4 Bxa1 2.Sxd6 Rb2 3.Ke5 Rf2#
1.Rxg7 d7 2.Kg5 d8Q+ 3.Kh6 Qh4#
S = 3 * 6 – 3 * 1 = 15 (wRb5 is excess for Qh4#)
12.5 points - No 20, Rolf Wiehagen (Germany) & Christer Jonsson (Sweden) 2q5/3p3p/3P4/3P4/3P4/3P4/2Rp1p1r/5K1k
1...Rxc8 2.Rg2 Rh8 3.Rg8 Rxh7#
1...Rc5 2.Qc6 dxc6 3.Rh5 Rxh5#
1...Rc6 2.Qc7 dxc7 3.Rh6 Rxh6#
1...Rc3 2.Qc4 dxc4 3.Rh3 Rxh3#
1...Rc4 2.Qc5 dxc5 3.Rh4 Rxh4#
S = 2.5 * 5 – 0 = 12.5
10 points - No 11 Anton Bidlen TT-200, SuperProblem, 14-02-2018 | |
8/1R6/3Pb3/1r1k4/4N3/6K1/2B5/8 |
h#2 | 6.1.. | (5+3) |
|
8 points - No 2 Dieter Müller TT-200, SuperProblem, 14-02-2018 | |
2n5/1p6/P1nkP1PK/R3RP2/2P1p3/8/8/3r2b1 |
h#2 | 5.1.. | (8+7) |
|
6 points - No 13 Štefan Sovík & Anton Bidlen TT-200, SuperProblem, 14-02-2018 | |
6n1/7N/3K1pP1/3p1P2/6kN/4pr1R/1p3qBP/4bR2 |
h#2 | 5.1.. | (9+9) |
|
10 points - No 11, Anton Bidlen (Slovakia) 8/1R6/3Pb3/1r1k4/4N3/6K1/2B5/8
1.Rb4 Rc7 2.Rd4 Rc5#
1.Ke5 Rg7 2.Kf5 Rg5#
1.Kd4 Kf4 2.Rd5 Rb4#
1.Kc6 d7 2.Bd5 d8S#
1.Kc4 Ra7 2.Kb4 Ra4#
1.Bd7 Rxb5+ 2.Ke6 Bb3#
S = 2 * 6 – 2 * 1 = 10 (wBc2 is excess for d8S#)
8 points - No 2, Dieter Müller (Germany) 2n5/1p6/P1nkP1PK/R3RP2/2P1p3/8/8/3r2b1
1.Rd5 Kg5 2.Kxe5 Rxd5#
1.Bb6 axb7 2.Bc7 bxc8S#
1.Kc7 a7 2.Kb6 a8S#
1.Ke7 g7 2.Kf6 g8S#
1.Sb6 e7 2.Sd7 e8S#
S = 2 * 5 – 2 * 1 = 8 (wRe5 is excess for bxc8S#)
6 points - No 13, Štefan Sovík & Anton Bidlen (Slovakia) 6n1/7N/3K1pP1/3p1P2/6kN/4pr1R/1p3qBP/4bR2
1.Ba5 Rd1 2.Kf4 Rd4#
1.Qg1 Sxf3 2.Qxh2+ Sxh2#
1.Qxh4 Rhxf3 2.Qh5 Rf4#
1.Qxg2 Sxg2 2.Rg3 Rh4#
1.Rxf5 Sxf5 2.Qc2 Sxe3#
S = 2 * 5 – 2 * 2 = 6 (wBg2, wRh3 are excess for Rd4#)
Section of problems with gomogeneous solutions or groups of solutions | Раздел задач с однородными решениями или группами решений
1st Place, 1st Prize - No 6 Anatoly Skripnik & Vitaly Medintsev TT-200, SuperProblem, 14-02-2018 | |
8/r4p2/1KNk1n2/1pN5/1r6/2p1p3/5qn1/8 |
h#3 | 6.1.. | (3+10) |
|
2nd Place, 2nd Prize - No 1 Anatoly Vasilenko TT-200, SuperProblem, 14-02-2018 | |
3R4/1n3pp1/2PPp2r/1K1k4/1p3rN1/P4P2/p1P5/8 |
h#2 | 7.1.. | (8+9) |
|
3rd Place, Special Prize - No 28 Ingemar Lind TT-200, SuperProblem, 14-02-2018 | |
kr6/rb6/2Bppppp/1R6/8/q1p5/4n3/1K6 |
h#2 | 10.1.. | (3+12) |
|
1st Place, 1st Prize - No 6, Anatoly Skripnik & Vitaly Medintsev (Russia) 8/r4p2/1KNk1n2/1pN5/1r6/2p1p3/5qn1/8
I: 1.Qf5 Sd4 2.Ke5 Kc6 3.Sf4 Sf3#
II: 1.Sh4 Sd7 2.Ke6 Kc5 3.Sf5 Sf8#
III: 1.Kd5 Sxb4+ 2.Kd4 Kxb5 3.Sd5 Sb4-c6#
IV: 1.Se8 Sxa7 2.Ke7 Kb7 3.Kd8 Sa7-c6#
V: 1.Sd7+ Kxa7 2.Kc7 Se6+ 3.Kc7-c8 Se7#
VI: 1.Rc7 Sa4 2.Kd7 Ka6 3.Kd7-c8 Sb6#
I, II: echo-chameleon mates with function permutation between White Knights and White FML-effect.
III, IV: flight-giving-square for both Kings, switchback of Sc6. Herewith bK are checkmated on different squares (d4/d8)
V, VI: bK are checkmated on the same square c8 (but he went to this square by different routes) from different White Knights with function permutation between them.
I, III, IV, VI – wK cross on 2nd move
In all solutions both Kings play very actively!
(authors.)
I и II: эхо-хамелеонные маты с переменой функций белых коней и белым эффектом "ушел-пришел"
III и IV: предоставление поля обоим королям, возврат Sc6. При этом черный король получает мат на разных полях (d4/d8)
V и VI: черный король получает мат на одном и том же поле c8 (но приходит он туда разными маршрутами) от разных белых коней с переменой их функций
I, III, IV, VI – крест белого короля на 2-м ходу
Во всех решениях активно играют оба короля!
(авторы.)
EN <-> RU
2nd Place, 2nd Prize - No 1, Anatoly Vasilenko (Ukraine)3R4/1n3pp1/2PPp2r/1K1k4/1p3rN1/P4P2/p1P5/8
1.e5 c3 2.Re6 Se3#
1.Rd4 f4 2.g6 Sf6#
Two mates by Knight with reciprocal change of squares which actively blocked and guarded by Pawns (d4 и e5).
1.Sc5 d7 2.Sxd7 Rxd7#
1.Kd4 Kxb4 2.Sxd6 Rxd6#
Two echo-mates by Rook with capturing of bS.
1.Rc4 cxb7 2.Rc7 dxc7#
1.Sxd8 c7 2.Kxd6 cxd8Q#
“Zilahi” with elimination of mating battery pieces.
1.a1B ~ 2.Bd4 c4? bxc3 e.p.!
1.a1B c3? 2.Bd4??
1.a1B axb4 2.Bd4 c4#
“Anti-en passant” with thematic dual-avoidance (avoidance of non-thematic repetition of move c2-c3) and black underpromotion
(author.)
1.e5 c3 2.Re6 Se3#
1.Rd4 f4 2.g6 Sf6#
Два мата конем с чередованием активно блокируемых и подхватываемых белыми пешками полей (d4 и e5).
1.Sc5 d7 2.Sxd7 Rxd7#
1.Kd4 Kxb4 2.Sxd6 Rxd6#
Два эхо-мата ладьей со взятием черного коня.
1.Rc4 cxb7 2.Rc7 dxc7#
1.Sxd8 c7 2.Kxd6 cxd8Q#
“Зилахи” с уничтожением матующих батарейных фигур.
1.a1B ~ 2.Bd4 c4? bxc3 e.p.!
1.a1B c3? 2.Bd4??
1.a1B axb4 2.Bd4 c4#
“Анти-en passant” с тематической антидуалью (недопущение нетематического повтора хода с3) и слабым черным превращением.
(автор.)
EN <-> RU
3rd Place, Special Prize - No 28, Ingemar Lind (Sweden) kr6/rb6/2Bppppp/1R6/8/q1p5/4n3/1K6
1.Qa5 Rxa5 2.Ra6 Rxa6#
1.Qc5 Rxc5 2.Ra5 Rxa5#
1.Qb4+ Rxb4 2.Ra4 Rxa4#
1.Qb3+ Rxb3 2.Ra3 Rxa3#
1.Qb2+ Rxb2 2.Ra2 Rxa2#
1.d5 Rxd5 2.Rd8 Rxd8#
1.e5 Rxe5 2.Re8 Rxe8#
1.f5 Rxf5 2.Rf8 Rxf8#
1.g5 Rxg5 2.Rg8 Rxg8#
1.h5 Rxh5 2.Rh8 Rxh8#
Two groups of 5 solutions: in solutions of one group – active sacrifices of Queen, in solutions of another – annihilation of Black Pawns for line-opening. Solutions of both groups are finished by active sacrifices of different Rooks.
Separately motives of each group were realized many times, including this TT. But I consider a combination of these motives in 2x5 format as good achievement that is worth of Special Prize.
Две группы по 5 решений: в решениях одной группы – активные жертвы ферзя, в решениях другой – аннигиляция черных пешек для освобождения линий. Решения обеих групп венчают активные жертвы разных ладей.
По отдельности мотивы каждой группы встречались не раз, в том числе в других задачах данного ТТ. Но объединение этих мотивов в формате 2х5 считаю неплохим достижением, достойным специального приза.
EN <-> RU
1st Honorable Mention - No 23 Anatoly Stepochkin TT-200, SuperProblem, 14-02-2018 | |
2Nb1rN1/1nn2p1B/1Kp2P1B/3bk2p/2p3p1/2Pq1r2/3P1P2/8 |
h#2 | 5.1.. | (9+13) |
|
2nd Honorable Mention - No 14 Ivan Antipin TT-200, SuperProblem, 14-02-2018 | |
1r1n3K/2n1p3/3B1Rp1/8/1p2P2P/1prk4/6q1/7b |
h#3 | 5.1.. | (5+11) |
|
3rd Honorable Mention - No 7 Karol Mlynka TT-200, SuperProblem, 14-02-2018 | |
5n2/6p1/7b/3PpPQp/1pP1K1P1/4NP2/2PPkp2/2nr1b2 |
h#2 | 6.1.. | (10+11) |
|
1st Honorable Mention - No 23, Anatoly Stepochkin (Russia) 2Nb1rN1/1nn2p1B/1Kp2P1B/3bk2p/2p3p1/2Pq1r2/3P1P2/8
1.Qf5 d3 2.Qe6 d4#
1.Rxf6 f3 2.Re6 f4#
1.Sc5 Bxf8 2.S5e6 Bd6#
1.Bxf6 Sxf6 2.Se6 Sd7#
1.Re8 Sd6 2.Re6 Sxf7#
Five model mates with blocking e6 by five different Black pieces. (author.)
Also there is additional harmony in the fact that in every solution on both moves the same White and Black pieces played.
Пять правильных матов с блокированием поля e6 пятью разными чёрными фигурами. (автор.)
Гармонию задаче придает то, что в каждом из 5 решений и у белых, и у черных на обоих ходах играют одни и те же фигуры.
EN <-> RU
2nd Honorable Mention - No 14, Ivan Antipin (Russia) 1r1n3K/2n1p3/3B1Rp1/8/1p2P2P/1prk4/6q1/7b
1.Kc4 Bxc7 2.Kb5 Rf5+ 3.Ka4 Ra5#
1.Kxe4 Re6+ 2.Kf5 Re4 3.e6 Rf4#
1.Ke2 Rxg6 2.Kf1 Bc5 3.Qe2 Rg1#
1.Kc2 Be5 2.Kb1 Ra6 3.Rc2 Ra1#
1.Qxe4 Rf2 2.Qc4 Bf4 3.Be4 Rd2#
“Big star” of bK (on 1st and 2nd moves in 4 solutions) is rare and quite difficult concept for realization.
«Большая звездочка» черного короля (на 1-м и 2-м ходах в первых четырех решениях) – редкий и довольно сложный для реализации замысел.
EN <-> RU
3rd Honorable Mention - No 7, Karol Mlynka (Slovakia) 5n2/6p1/7b/3PpPQp/1pP1K1P1/4NP2/2PPkp2/2nr1b2
1.Sd3 Sxf1 2.Se1 Sg3#
1.Re1 Sd1 2.b3 Sc3#
1.Ke1 c3 2.Se2 Sc2#
1.Kxd2 Qe7 2.Be2 Qxb4#
1.hxg4 Kxe5 2.Kxf3 Qxg4#
1.g6 Sg2 2.Bg7 Qe3#
Two groups of 3 solutions which is united by FML-motives and square-blockings. In solutions of one group wS checkmates, in solutions of another – wQ.
Две группы по 3 решения, объединенные мотивами «ушел-пришел» и блокированиями. В решениях одной тройки матует белый конь, в решениях другой – ферзь.
EN <-> RU
Special Hon. Mention - No 25 Mikhail Halma & Viktor Yuzyuk TT-200, SuperProblem, 14-02-2018 | |
6rk/5pbr/8/8/5RP1/8/8/B3K3 |
h#1.5 | 12.1.. | (4+5) |
|
1st Commendation - No 19 Rolf Wiehagen & Christer Jonsson TT-200, SuperProblem, 14-02-2018 | |
8/6Kb/2P2p2/N2kb3/8/4pR2/5q2/7B |
h#2 | 5.1.. | (5+6) |
|
2nd Commendation - No 22 Anatoly Stepochkin TT-200, SuperProblem, 14-02-2018 | |
6q1/pKQ3r1/2p1p1p1/1b5r/2p5/4k1p1/6p1/1B2B3 |
h#2 | 5.1.. | (4+12) |
|
Special Honorable Mention - No 25, Mikhail Halma & Viktor Yuzyuk (Ukraine) 6rk/5pbr/8/8/5RP1/8/8/B3K3
1...Ra4 2.Ra8 Rxa8#
1...Rb4 2.Rb8 Rxb8#
1...Rc4 2.Rc8 Rxc8#
1...Rd4 2.Rd8 Rxd8#
1...Re4 2.Re8 Rxe8#
1...Rxf7 2.Rf8 Rxf8#
1...Rf6 2.Rh6 Rxh6#
1...Rf5 2.Rh5 Rxh5#
1...g5 2.Rh4 Rxh4#
1...Rf3 2.Rh3 Rxh3#
1...Rf2 2.Rh2 Rxh2#
1...Rf1 2.Rh1 Rxh1#
This problem has the most quantity of solutions among all sent problems – 12, and that’s why the problem is worth of special distinction. Of course, the play itself is very simple, monotonous and quite symmetrical. But the authors were managed to add last possible mate (in this scheme of Black pieces) on every of thematic lines (in Sp. Prize No 28 – only 5 mates on every line). This fact gives the concept a certain completeness.
Из всех присланных на данный ТТ эта задача имеет наибольшее количество решений – 12, за что и получает специальное отличие. Сама игра, конечно, очень проста, однообразна и во многом симметрична. Однако авторам удалось добавить последний возможный в данной схеме черных фигур шестой мат по каждой из тематических линий (в спецпризе No 28 – только 5 матов по каждой линии). Это придает замыслу некую завершенность.
EN <-> RU
1st Commendation - No 19, Rolf Wiehagen (Germany) & Christer Jonsson (Sweden) 8/6Kb/2P2p2/N2kb3/8/4pR2/5q2/7B
1.Bd3 (Ke4?) Sb3 2.Ke4 Rxf2#
1.Bc3 (Kd4?) Rf5+ 2.Kd4 Rd5#
1.Bd4 (Ke5?) Rxf6+ 2.Ke5 Sc4#
1.Bc7 (Kd6?) Rxe3+ 2.Kd6 Sb7#
1.e2 (Qc5?) Kf7 2.Qc5 Rd3#
Five solutions with various mates. United nuance is a choice of order of Black moves in all solutions.
Пять решений с разнообразными матами. Объединяющий момент – выбор порядка ходов черных во всех решениях.
EN <-> RU
2nd Commendation - No 22, Anatoly Stepochkin (Russia) 6q1/pKQ3r1/2p1p1p1/1b5r/2p5/4k1p1/6p1/1B2B3
1.Ba6+ Kxc6 2.Kd4 Qf4#
1.Rf5 Qxg7 2.Rf3 Qe5#
1.Rd7 Bd3 2.Rd4 Qxg3#
1.Rf7 Qd7 2.Rf3 Qd2#
1.Rgh7 Qxh7 2.g5 Qe4#
Five different unpinnings of wQ. (author.)
Пять разных развязываний белого ферзя. (автор.)
EN <-> RU
Annex | Приложение
Dedicated to the participants Mikhail Halma TT-200, SuperProblem, 14-02-2018 | |
4k3/3bpq2/4N3/3pKp2/4B3/8/8/8 |
h#1.5 | 5.1.. | (3+6) |
|
1...Bxf5 2.Qg6 Bxg6#
1...Bc2 2.Ba4 Bxa4#
1...Bd3 2.Bb5 Bxb5#
1...Bxd5 2.Bc6 Bxc6#
1...Bf3 2.Qh5 Bxh5#
New Year tree. wB star.
Новогодняя ёлка. Звездочка белого слона.
EN <-> RU