Final Award in Quick Composing TT-231 | Окончательные итоги блицконкурса TT-231

Pretenders | Самозванцы

Theme | Тема

84 entries were received from 34 authors representing 15 countries | На конкурс поступило 84 композиций от 34 авторов из 15 стран

EN <-> RU

I have received 90 problems (including different versions), the vast majority of which were orthodox helpmates. Unfortunately a large “layer” of fairy ideas where thematic piece, that arrives on the square of pretender, has another color (Andernach, Masand, Magic and etc) or type (Chameleon, Einstein and etc), - remained unexplored. I distinguished nice problems in which a proposed theme (formally not very difficult) is a central part of content. Unfortunately, I cannot include No 36B (h#2.5, Ka1-Kc4) in the award – after rotation of position, the author probably didn’t note that thematic bRb4 can be replaced with the Pawn. Due to claims on provisional award, No 73 (Kf8-Kd3) and No 59 (Ka8-Kf5) are exclidede in view of anticipations – yacpdb/94572 and yacpdb/345339 respectively.

Award is the following | Отличия распределились следующим образом

1st Prize, 1st Place - No 69 (version)
Luis Miguel Martin
TT-231, SuperProblem, 02-12-2019
2nd Prize, 2nd Place - No 74
Ilija Serafimović
TT-231, SuperProblem, 02-12-2019
3rd Prize, 3rd Place - No 78
Nikolai Kolesnik
TT-231, SuperProblem, 02-12-2019

1st Prize, 1st Place - No 69 (version), Luis Miguel Martin (Spain) 8/3p4/2prbn2/pN1nkq2/rb4p1/p1NP2K1/P2P4/8

1.Bxc3 dxc3 2.Rad4 cxd4#
1.Se3 dxe3 2.Rdd4 exd4#
1.Se4+ dxe4 2.Qf6 d2-d4#
The most artistic interpretation of proposed theme – a pretender is ready to move into d4 at the 1st move but it’s only an illusion!
EN <-> RU

2nd Prize, 2nd Place - No 74, Ilija Serafimović (Serbia) 8/7p/p1P1P3/4NP2/2PNk3/1p1nbr2/1pp2r2/6K1

1.c1S Sf7 2.Se5 Se2 3.Scd3 Sf7-d6#
1.c1B Sb5 2.Bd4 Sg6 3.Bce3 Sb5-d6#
In orthodox genre, you can disguise a substitution for pretender only with Pawn promotion (that is why the theme was set as fairy first of all!). In this problem, Black promotions (known from the problem yacpdb/412012) are supplemented by thematic White play.
EN <-> RU

3rd Prize, 3rd Place - No 78, Nikolai Kolesnik (Ukraine) 1N6/1K1N4/4p3/p3pq2/b3pk2/1R2p3/1R1ppr2/8

1.Bxb3 Sxe5 2.Kxe5 Rxd2 3.Rf4 Sd7#
1.Bxd7 Rxe3 2.Kxe3 Sc6 3.Qf4 Rb3#
It is pure and strong, with function permutation and sacrifices if White pieces. It should be noted that an interpretation, in which White pretender initially stands on a square on that another White piece will be checkmate, is less paradoxical because it is obvious that this pretender is out of place. But many authors chose this way.
EN <-> RU
4th-5th Prize - No 15
Gábor Tar
TT-231, SuperProblem, 02-12-2019
h#2b-e) see text(4+7)
4th-5th Prize - No 79
Nikolai Kolesnik & Valery Semenenko
TT-231, SuperProblem, 02-12-2019
1st Honorable mention - No 77
Viktoras Paliulionis
TT-231, SuperProblem, 02-12-2019

4th-5th Prize - No 15, Gábor Tar (Hungary) 1b2K3/1q6/1p6/kN6/1p6/N7/1pPp4/8

a) diagram: 1.Ka6 Sc7+ 2.Ka7 Sa3-b5#
b) in mat. pos. a) bKa7->a5: 1.Ka4 Sc3+ 2.Ka3 Sc7-b5#
c) in mat. pos. b) bKa3->c5: 1.Kc6 Sa7+ 2.Kc7 Sc3-b5#
d) in mat. pos. c) bKc7->c5: 1.Kc4 Sa3+ 2.Kc3 Sa7-b5#
e) in mat. pos. d) bKc3->a5 = a): 1.Ka6 Sc7+ 2.Ka7 Sa3-b5#
Two nice problems in which White Knights alternately checkmates on initial square of each other.
EN <-> RU

4th-5th Prize - No 79, Nikolai Kolesnik & Valery Semenenko (Ukraine) K2b4/3N4/5r2/1p4pN/1q4np/3k4/1B6/5n2

1...Sg3! (Bd4?) 2.Rf3 Sd7-f6 3.Ke3 Bd4+ 4.Kf4 Sf6-h5#
(Sb6?) 2.Rc6 Sh5-f6 3.Kc4 Sb6+ 4.Kc5 Sf6-d7#

1st Honorable mention - No 77, Viktoras Paliulionis (Lithuania) 8/8/6p1/8/2n2K1p/4nP2/4kP2/8

1.Sg4 fxg4 2.Se3! (Se5?) Ke5 3.Kf3 g5 4.Kg4 f3+ 5.Kh5 Kf4 6.Sg4 fxg4#
In fact, the problem is a reworking of good pdb/P1365348, but an improvement if the form is drastically.
EN <-> RU
2nd Honorable mention - No 88
Aleksandr Kostyukov
TT-231, SuperProblem, 02-12-2019
3rd Honorable mention - No 25
Igor Kochulov
TT-231, SuperProblem, 02-12-2019
h#9Double Maximummer

a1, a4, a7, d1, d7,
f8, g4, g7: Nao (NA)
Commendation - No 26
Vitaly Medintsev
TT-231, SuperProblem, 02-12-2019

2nd Honorable mention - No 88, Aleksandr Kostyukov (Russia) 3n4/4P3/1Bb2N2/4np2/2pP4/3k1r2/7q/K7

1...Ba5 2.Kxd4 exd8B 3.Rd3 Bdb6#
1...Sd5 2.Ke4 e8S 3.Sd3 Sef6#
Pairs of thematic White promotions (pretenders initially stand on squares on which a checkmate will be).
EN <-> RU

3rd Honorable mention - No 25, Igor Kochulov (Russia) 5(N3)2/(N3)2(N3)2(N3)1/5K1p/1k6/(N3)5(N3)p/5p2/8/(N3)2(N3)4

1.Kc4 NAag1 2.Kd3 Nag7-a4 3.Ke2 NAdg7 4.Kf1 NAad1 5.Kg2 NAga7 6.Kh3 NAa1-g4 7.Kxg4 NAa1 8.Kh5 NAc2 9.f2 Nag1-d7#
Authors of many sent problems built his concept based on systematic movement of Pawn “caterpillar” – from 2 to 5 in a column. The author of No 25 showed ingenuity and developed this idea by “looping” of 7 White Nao movement. On a mating move, the cycle completes, and first Nao moves on the square d7 that was released so hardly. Unfortunately, the majority of White Nao’s don’t take part in mating picture.
EN <-> RU

Commendation - No 26, Vitaly Medintsev (Russia) qrrb4/2RK1p2/8/3kpp2/p4p2/P1P5/1n3PP1/1B1n4

1.Rb4 axb4 2.Rb8 Rc5#
1.Se3 fxe3 2.Sd1 c4#
1.f3 gxf3 2.f4 Be4#
Commendation - No 27
Vitaly Medintsev
TT-231, SuperProblem, 02-12-2019
Commendation - No 29A
Vitaly Medintsev
TT-231, SuperProblem, 02-12-2019
Commendation - No 35
Menachem Witztum & Emanuel Navon
TT-231, SuperProblem, 02-12-2019
h#2.5b) Qd3->d2(8+8)

Commendation - No 27, Vitaly Medintsev (Russia) 4b1nr/2p2p2/B1p1Pr1n/3pKpN1/3P1B2/3P1P2/4kP1R/6R1

1.c5 dxc5 2.c6 d4#
1.Sg4+ fxg4 2.Sh6 f3#

Commendation - No 29A, Vitaly Medintsev (Russia) 4K3/8/8/3p2P1/4k3/2R2N2/4p3/2R3N1

1.e1S! (tempo!) Rc4+ 2.Kd3 R1c3#
(tempo!) Sd2+ 2.Kd4 Sgf3#

Commendation - No 35, Menachem Witztum & Emanuel Navon (Israel) POS

a) diagram: 1...Sf6 2.Qf5 Sde4 3.Re7 d5#
b) Qd3->d2: 1...Sc8 2.Sd7 Sd6 3.Bd5 f5#
Commendation - No 37
Menachem Witztum
TT-231, SuperProblem, 02-12-2019
h#2.5b) wBa3(7+9)
Commendation - No 38
Menachem Witztum
TT-231, SuperProblem, 02-12-2019
Commendation - No 66
Emanuel Navon
TT-231, SuperProblem, 02-12-2019

Commendation - No 37, Menachem Witztum (Israel) 8/8/b3p3/P3P2K/P1N5/Rpk1n3/1N2nq2/2b3r1

1...bxc4 2.Kxc4 Sxd5 3.Bd4 b3#
1...Sxc5 2.Kxc5 bxa3 3.d4 Sa4#

Commendation - No 38, Menachem Witztum (Israel) 5K1b/5P2/R6p/7P/p4rrp/2Bq2k1/2b2pP1/1R6

a) diagram: 1...Sd2 2.Sc2 Sbc4 3.Qd4 Rxb3#
b) wBa3: 1...Sd3 2.Sd4 Scb2 3.Qc2 Bb4#

Commendation - No 66, Emanuel Navon (Israel) 5K1b/5P2/R6p/7P/p4rrp/2Bq2k1/2b2pP1/1R6

1...Rh1 2.Re4 Be5+ 3.Rgf4 Rg6#
1...Rg1 2.Rg7 Rg6+ 3.Rg4 Be5#
Commendation - No 80
Aleksandr Semenenko
TT-231, SuperProblem, 02-12-2019
Commendation - No 81
Valery Semenenko
TT-231, SuperProblem, 02-12-2019

Commendation - No 80, Aleksandr Semenenko (Ukraine) 6kb/8/5p1p/7p/8/1q5r/2N5/N1K5

1...Sc2-d4 2.Rd3! (Re3?) Sd4-e6 3.Rd7 Sf8 4.Kg7 Sc2 5.Qg8 Sc2-d4 6.Rf7 Sd4-e6#

Commendation - No 81, Valery Semenenko (Ukraine) 8/8/8/3p2p1/6Pb/2p1pkp1/2p1p1p1/K1n5

1.Sc1-b3+ Ka2 2.Sb3-d4 Ka3! (Ka1?) 3.Sd4-f5 gxf5 4.c1S f6 5.Sc1 b3 f7 6.Sb3-d4 f8Q+ 7.Sd4-f5 Qxf5#

COMMENTS (real-time mode) | КОММЕНТАРИИ посетителей
comments powered by HyperComments